Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Distributed Machine Learning Patterns
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Disponible en magasin

Distributed Machine Learning Patterns

Distributed Machine Learning Patterns

Yuan Tang

375 pages, parution le 10/10/2022

Résumé

Practical patterns for scaling machine learning from your laptop to a distributed cluster. In Distributed Machine Learning Patterns you will learn how to: Apply distributed systems patterns to build scalable and reliable machine learning projects Construct machine learning pipelines with data ingestion, distributed training, model serving, and more Automate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows Make trade offs between different patterns and approaches Manage and monitor machine learning workloads at scale Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. about the technology Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure. about the book Distributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Real-world scenarios provide clear examples of how to apply each pattern, alongside the potential trade offs for each approach. Once you've mastered these cutting edge techniques, you'll put them all into practice and finish up by building a comprehensive distributed machine learning system.table of contents PART 1: BASIC CONCEPTS AND BACKGROUND READ IN LIVEBOOK 1INTRODUCTION TO DISTRIBUTED MACHINE LEARNING SYSTEMS PART 2: PATTERNS OF DISTRIBUTED MACHINE LEARNING SYSTEMS READ IN LIVEBOOK 2DATA INGESTION PATTERNS READ IN LIVEBOOK 3DISTRIBUTED TRAINING PATTERNS READ IN LIVEBOOK 4MODEL SERVING PATTERNS READ IN LIVEBOOK 5WORKFLOW PATTERNS READ IN LIVEBOOK 6OPERATION PATTERNS PART 3: BUILDING A DISTRIBUTED MACHINE LEARNING PIPELINE 7 OVERVIEW OF PROJECT ARCHITECTURE 8 OVERVIEW OF RELEVANT TECHNOLOGIES 9 A COMPLETE IMPLEMENTATIONYuan Tang is currently a founding engineer at Akuity. Previously he was a senior software engineer at Alibaba Group, building AI infrastructure and AutoML platforms on Kubernetes. Yuan is co-chair of Kubeflow, maintainer of Argo, TensorFlow, XGBoost, and Apache MXNet. He is the co-author of TensorFlow in Practice and author of the TensorFlow implementation of Dive into Deep Learning.

Caractéristiques techniques

  PAPIER
Éditeur(s) Mannings publ.
Auteur(s) Yuan Tang
Parution 10/10/2022
Nb. de pages 375
EAN13 9781617299025

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription