Le Deep Learning pour le traitement d'images
Classification, détection et segmentation avec Python et Tensorflow
Résumé
Après une introduction à l'intelligence artificielle, le matériel et les logiciels nécessaires à sa pratique sont détaillés. Suivent ensuite des explications progressives des réseaux de neurones convolutionnels, en décrivant tout d'abord les classifieurs linéaires, puis les réseaux de neurones profonds, et enfin les réseaux convolutionnels. Ces trois chapitres sont accompagnés de scripts Python utilisant TensorFlow, et suivis d'astuces pour améliorer la performance et limiter les biais potentiels du réseau et l'impact carbone lié à son apprentissage et son utilisation. L'apprentissage par transfert, qui consiste à adapter un réseau pré-entraîné à une nouvelle tâche, est ensuite présenté, et accompagné d'un exemple basé sur TensorFlow.
Les chapitres suivants décrivent les réseaux convolutionnels appliqués à d'autres tâches que la classification, comme la détection et la segmentation. Ces chapitres sont accompagnés de scripts présentant l'utilisation des bibliothèques TensorFlow Object Detection et de l'architecture Unet.
Le lecteur trouve une description de plusieurs méthodes permettant de visualiser le fonctionnement du réseau et d'améliorer son explicabilité, puis cet ouvrage explique pourquoi surveiller les performances d'un modèle après son déploiement, et comment organiser une telle surveillance en pratique. Le script accompagnant ce chapitre décrit le fonctionnement de la librairie tf_explain, qui implémente plusieurs des méthodes présentées.
Vient ensuite un exposé des critères définis par la Commission européenne pour juger qu'un modèle d'intelligence artificielle est ""responsable"", et une traduction de ces critères en bonnes pratiques à adopter lors du développement et du déploiement.
Enfin, le livre conclut avec des conseils pour améliorer vos compétences et vous tenir au courant des évolutions récentes dans le domaine de l'apprentissage profond appliqué au traitement d'images.
L'avis du libraire Eyrolles
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Eni |
Auteur(s) | Daphné Wallach |
Parution | 10/01/2024 |
Nb. de pages | 536 |
Format | 17.8 x 21.6 |
Couverture | Broché |
Poids | 868g |
Intérieur | Noir et Blanc |
EAN13 | 9782409043208 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse