Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Recent Developments in The Navier-Stokes Problem
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Recent Developments in The Navier-Stokes Problem

Recent Developments in The Navier-Stokes Problem

Pierre Gilles Lemarié-Rieusset

406 pages, parution le 09/12/2002

Résumé

The Navier-Stokes equations: fascinating, fundamentally important, and challenging,. Although many questions remain open, progress has been made in recent years. The regularity criterion of Caffarelli, Kohn, and Nirenberg led to many new results on existence and non-existence of solutions, and the very active search for mild solutions in the 1990's culminated in the theorem of Koch and Tataru that, in some ways, provides a definitive answer.

Recent Developments in the Navier-Stokes Problem brings these and other advances together in a self-contained exposition presented from the perspective of real harmonic analysis. The author first builds a careful foundation in real harmonic analysis, introducing all the material needed for his later discussions. He then studies the Navier-Stokes equations on the whole space, exploring previously scattered results such as the decay of solutions in space and in time, uniqueness, self-similar solutions, the decay of Lebesgue or Besov norms of solutions, and the existence of solutions for a uniformly locally square integrable initial value. Many of the proofs and statements are original and, to the extent possible, presented in the context of real harmonic analysis.

Although the existence, regularity, and uniqueness of solutions to the Navier-Stokes equations continue to be a challenge, this book is a welcome opportunity for mathematicians and physicists alike to explore the problem's intricacies from a new and enlightening perspective. Explores important advances in the Cauchy problem on the whole of Rd for the Navier-Stokes equations

  • Includes a detailed introduction to real harmonic analysis
  • Discusses both strong solutions by direct methods and weak solutions by compactness methods
  • Contains original material on the definition of weak solutions and on local energy inequalities
  • Offers a simple, efficient introduction to Besov and Lorentz spaces using the discrete J-method of real interpolation

Contents

Introduction
  • What is this Book About?
I- SOME RESULTS OF REAL HARMONIC ANALYSIS
  • Real Interpolation, Lorentz Spaces, and Sobolev Embedding
  • Besov Spaces and Littlewood-Paley Decomposition
  • Shift-Invariant Banach Spaces of Distributions and Related Besov Spaces
  • Vector-Valued Integrals
  • Complex Interpolation, Hardy Space, and Calderon-Zygmund Operators
  • Vector-Valued Singular Integrals
  • A Primer to Wavelets
  • Wavelets and Functional Spaces
  • The Space BMO
II- A GENERAL FRAMEWORK FOR SHIFT-INVARIANT ESTIMATES FOR THE NAVIER-STOKES EQUATIONS
  • Weak Solutions for the Navier-Stokes Equations
  • Divergence-Free Vector Wavelets
  • The Mollified Navier-Stokes Equations
III- CLASSICAL EXISTENCE RESULTS FOR THE NAVIER-STOKES EQUATIONS
  • The Leray Solutions for the Navier-Stokes Equations
  • Kato's Mild Solutions for the Navier-Stokes Equations
IV- NEW APPROACHES OF MILD SOLUTIONS
  • The Mild Solutions of Koch and Tataru
  • Generalization of the Lp Theory: Navier-Stokes and Local Measures
  • Further Results on Local Measures
  • Regular Initial Values
  • Besov Spaces of Negative Order
  • Pointwise Multipliers of Negative Order
  • Further Adapted Spaces for the Navier-Stokes Equations
  • Cannone's Approach of Self-Similarity
V- DECAY AND REGULARITY RESULTS FOR WEAK AND MILD SOLUTIONS
  • Solutions of the Navier-Stokes Equations are Space-analytical
  • Space Localization and Navier-Stokes Equations
  • Time Decay for the Solutions to the Navier-Stokes Equations
  • Uniqueness of Ld Solutions
  • Further Results on Uniqueness of Mild Solutions
  • Stability and Lyapunov Functionals
VI- LOCAL ENERGY INEQUALITIES FOR THE NAVIER-STOKES EQUATIONS ON R3
  • The Caffarelli, Kohn, and Nirenberg Regularity Criterion
  • On the Dimension of the Set of Singular Points
  • Local Existence (in Time) of Suitable Locally Square Integrable Weak Solutions
  • Global Existence of Suitable Locally Square Integrable Weak Solutions
  • Leray's Conjecture on Self-Similar Singularities
CONCLUSION
  • Singular Initial Values

L'auteur - Pierre Gilles Lemarié-Rieusset

Pierre-Gilles Lemarié-Rieusset est professeur à l'université d'Evry. Il est l'auteur, avec Yves Meyer, du premier article paru sur la théorie mathématique des ondelettes (1986). Il est aujourd'hui reconnu comme un des meilleurs spécialistes de cette théorie dans le monde.

Caractéristiques techniques

  PAPIER
Éditeur(s) Chapman and Hall / CRC
Auteur(s) Pierre Gilles Lemarié-Rieusset
Parution 09/12/2002
Nb. de pages 406
Format 15,5 x 23,5
Couverture Broché
Poids 578g
Intérieur Noir et Blanc
EAN13 9781584882206
ISBN13 978-1-58488-220-6

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription