Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Initiation à la géométrie de Riemann
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Disponible en magasin

Initiation à la géométrie de Riemann

Initiation à la géométrie de Riemann

François Rouvière - Collection Mathématiques en devenir

344 pages, parution le 01/07/2016

Résumé

L'ouvrage s'adresse aux étudiants du master de mathématiques et au-delà, ainsi qu'à tous ceux qui souhaitent s'initier à la géométrie de Riemann en vue de l'étude ultérieure de textes plus avancés, soit vers des développements mathématiques récents, soit vers l'utilisation en physique (relativité générale notamment). Les prérequis se limitent à une bonne familiarité avec le calcul différentiel, à quelques notions de topologie générale et aux premiers théorèmes généraux sur les équations différentielles.

La géométrie riemannienne est avant tout l'oeuvre de Cari Friedrich Gauss et de Bernhard Riemann, chacun de ces deux grands mathématiciens ajoutant une pierre fondatrice nouvelle au magnifique édifice. Ce chapitre mathématique est aussi la porte d'entrée vers toutes les théories qui tentent d'expliquer la géométrie et les lois de l'univers. L'auteur du présent livre, mathématicien, est aussi astronome amateur, enclin à s'intéresser aux questions qui intriguent et fascinent en la matière ses collègues et ses étudiants, entre autres l'expansion de l'univers et le big bang.

François Rouvière nous invite ici à un vrai voyage, que l'on accomplira avec lui sans quitter notre propre chambre.il nous apprend à marcher tout droit sur une surface,à bien regarder sous nos pieds, il nous montre comment éviter de tomber dans le golfe de Gênes, comment nous diriger malgré les inexactitudes de nos cartes (sans pour autant, bien sûr, brûler tous nos atlas), comment nous instruire dans le transport parallèle. Il nous explique à l'occasion quelques lois de l'optique, dont le secret des mirages.

Partant du cas intuitif et instructif des surfaces, dont l'étude occupe la première moitié du livre, et où l'on découvre les nombreux avatars de la courbure, le remarquable "Theorema Egregium" et la formule de Gauss-Bonnet, l'auteur nous fait entrer ensuite dans la dimension supérieure, nous apprend ce qu'est une variété, le flot d'un champ de vecteurs et nous prépare progressivement à accueillir sans peine la "miraculeuse" connexion riemannienne et, à partir de là, les géodésiques puis, dans leur sillage, l'application exponentielle en géométrie riemannienne et, en particulier, dans les groupes de Lie. La courbure apparaît enfin dans ce cadre élargi, et de deux manières, sous la forme du tenseur de Riemann.

Les exemples concrets sont les supports de la pensée et les espaces à courbure constante, qui possèdent beaucoup d'isométries, nous en offrent, aux côtés des espaces euclidiens, deux exemples encore plus beaux, en l'occurrence les espaces hyperboliques et ceux de la géométrie sphérique. Avec les pionniers Jànos Bolyai et Nikolaï Lobachevsky, avec Eugenio Beltrami, Félix Klein et sa boule, Henri Poincaré et sa propre boule à lui, Einstein et sa relativité générale, nous aurons comme compagnons de voyage une jet set très particulière.

Plus d'une cinquantaine d'exercices consistants, à la solution détaillée, sont là pour aller plus loin et soutenir notre compréhension par des exemples fondamentaux et variés.

L'auteur - François Rouvière

François Rouvière est professeur honoraire à l'université de Nice-Sophia Antipolis.

Autres livres de François Rouvière

Sommaire

  • Surfaces et géométrie de Gauss
    • Le ds2 d'une surface
    • Géodésiques d'une surface
    • Courbure d'une surface
  • Variétés et géométrie de Riemann
    • Notions de géométrie riemannienne
    • Espaces à courbure constante
    • Solutions des exercices
Voir tout
Replier

Avis des lecteurs

5 / 5

Note basée sur 1 commentaire (voir tous les commentaires)

Ajouter votre commentaire
Commentaire de Jean-louis D
publié le 09/11/2020
Acheteur vérifié

Très bien

Très bien pour bien comprendre la géométrie dd Riemann

Caractéristiques techniques

  PAPIER
Éditeur(s) Calvage et Mounet
Auteur(s) François Rouvière
Collection Mathématiques en devenir
Parution 01/07/2016
Nb. de pages 344
Format 15 x 23
Couverture Broché
Poids 572g
Intérieur Noir et Blanc
EAN13 9782916352497
ISBN13 978-2-916352-49-7

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription