Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Mathematical methods in computer vision
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Mathematical methods in computer vision

Mathematical methods in computer vision

Series: The IMA Volumes in Mathematics and its Applications , Vol. 133

Peter J. Olver, Allen Tannenbaum, Collectif Springer

164 pages, parution le 13/11/2003

Résumé

This volume comprises some of the key work presented at two IMA Workshops on Computer Vision during fall of 2000. Recent years have seen significant advances in the application of sophisticated mathematical theories to the problems arising in image processing. Basic issues include image smoothing and denoising, image enhancement, morphology, image compression, and segmentation (determining boundaries of objects including problems of camera distortion and partial occlusion). Several mathematical approaches have emerged, including methods based on nonlinear partial differential equations, stochastic and statistical methods, and signal processing techniques, including wavelets and other transform theories.

Shape theory is of fundamental importance since it is the bottleneck between high and low level vision, and formed the bridge between the two workshops on vision. The recent geometric partial differential equation methods have been essential in throwing new light on this very difficult problem area. Further, stochastic processes, including Markov random fields, have been used in a Bayesian framework to incorporate prior constraints on smoothness and the regularities of discontinuities into algorithms for image restoration and reconstruction.

A number of applications are considered including optical character and handwriting recognizers, printed-circuit board inspection systems and quality control devices, motion detection, robotic control by visual feedback, reconstruction of objects from stereoscopic view and/or motion, autonomous road vehicles, and many others.

Contributors : About 10 authors

Contents

  • A large deviation theory analysis of Bayesian tree search
  • Expectation-based, multi-focal, saccadic vision
  • Statistical shape analysis in high-level vision
  • Maximal entropy for reconstruction of back projection images
  • On the Monge-Kantorovich problem and image warping
  • Analysis and synthesis of visual images in the brain: evidence for pattern theory
  • Nonlinear diffusions and optimal estimation
  • The Mumford-Shah functional: from segmentation to stereo
  • List of workshops participants

L'auteur - Peter J. Olver

University of Minnesota

L'auteur - Collectif Springer

Autres livres de Collectif Springer

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Peter J. Olver, Allen Tannenbaum, Collectif Springer
Parution 13/11/2003
Nb. de pages 164
Format 16 x 24
Couverture Relié
Poids 365g
Intérieur Noir et Blanc
EAN13 9780387004976
ISBN13 978-0-387-00497-6

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription