Mathematical methods in computer vision
Series: The IMA Volumes in Mathematics and its Applications , Vol. 133
Peter J. Olver, Allen Tannenbaum, Collectif Springer
Résumé
This volume comprises some of the key work presented at two IMA Workshops on Computer Vision during fall of 2000. Recent years have seen significant advances in the application of sophisticated mathematical theories to the problems arising in image processing. Basic issues include image smoothing and denoising, image enhancement, morphology, image compression, and segmentation (determining boundaries of objects including problems of camera distortion and partial occlusion). Several mathematical approaches have emerged, including methods based on nonlinear partial differential equations, stochastic and statistical methods, and signal processing techniques, including wavelets and other transform theories.
Shape theory is of fundamental importance since it is the bottleneck between high and low level vision, and formed the bridge between the two workshops on vision. The recent geometric partial differential equation methods have been essential in throwing new light on this very difficult problem area. Further, stochastic processes, including Markov random fields, have been used in a Bayesian framework to incorporate prior constraints on smoothness and the regularities of discontinuities into algorithms for image restoration and reconstruction.
A number of applications are considered including optical character and handwriting recognizers, printed-circuit board inspection systems and quality control devices, motion detection, robotic control by visual feedback, reconstruction of objects from stereoscopic view and/or motion, autonomous road vehicles, and many others.
Contributors : About 10 authors
Contents
- A large deviation theory analysis of Bayesian tree search
- Expectation-based, multi-focal, saccadic vision
- Statistical shape analysis in high-level vision
- Maximal entropy for reconstruction of back projection images
- On the Monge-Kantorovich problem and image warping
- Analysis and synthesis of visual images in the brain: evidence for pattern theory
- Nonlinear diffusions and optimal estimation
- The Mumford-Shah functional: from segmentation to stereo
- List of workshops participants
L'auteur - Peter J. Olver
University of Minnesota
L'auteur - Collectif Springer
Autres livres de Collectif Springer
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Peter J. Olver, Allen Tannenbaum, Collectif Springer |
Parution | 13/11/2003 |
Nb. de pages | 164 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 365g |
Intérieur | Noir et Blanc |
EAN13 | 9780387004976 |
ISBN13 | 978-0-387-00497-6 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques appliquées Probabilités
- Sciences Mathématiques Mathématiques appliquées Statistiques
- Sciences Mathématiques Mathématiques appliquées Ondelettes
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques