Multi-dimensional Hyperbolic Partial Differential Equations
First-order systems and applications
Sylvie Benzoni-Gavage, Denis Serre - Collection Oxford Mathematical Monographs
Résumé
- Authored by leading academics
- Comprehensive, self-contained work
- Adopts an original approach, presents new results, and fills gaps in proofs of important theorems
- Extensive bibliography, including classical and recent papers in both PDE analysis and in applications (mainly to gas dynamics)
Authored by leading scholars, this comprehensive, self-contained text presents a view of the state of the art in multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. Ordered in sections of gradually increasing degrees of difficulty, the text first covers linear Cauchy problems and linear initial boundary value problems, before moving on to nonlinear problems, including shock waves. The book finishes with a discussion of the application of hyperbolic PDEs to gas dynamics, culminating with the shock wave analysis for real fluids.
With an extensive bibliography including classical and recent papers both in PDE analysis and in applications (mainly to gas dynamics), this text will be valuable to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.
Readership: Graduates and researchers in Applied Mathematics
L'auteur - Sylvie Benzoni-Gavage
Sylvie Benzoni-Gavage, Université Claude Bernard Lyon I, France
Autres livres de Sylvie Benzoni-Gavage
L'auteur - Denis Serre
Denis Serre is Professor of Mathematics at École Normale Supérieure de Lyon and a former member of the Institut Universitaire de France. He is a member of numerous editorial boards and the author of "Systems of Conservation Laws" (Cambridge University Press 2000). With S. Benzoni-Gavage, he is the co-author of "Multi-Dimensional Hyperbolic Partial Differential Equations. First Order Systems and Applications" (Oxford University Press 2007). With S. Friedlander, he has co-edited four volumes of a "Handbook of Mathematical Fluid Dynamics" (Elsevier 2002--2007). The first edition of the present book is a translation of the original French edition, "Les Matrices: Théorie et Pratique", published by Dunod (2001).
Autres livres de Denis Serre
Sommaire
- The linear Cauchy problem
- 1. Linear Cauchy problem with constant coefficients
- 2. Linear Cauchy problem with variable coefficients
- The linear initial boundary value problem
- 3. Friedrichs symmetric dissipative IBVPs
- 4. Initial boundary value problem in a half-space with constant coefficients
- 5. Construction of a symmetrizer under (UKL)
- 6. The characteristic IBVP
- 7. The homogeneous IBVP
- 8. A classification of linear IBVPs
- 9. Variable coefficients initial boundary value problems
- Nonlinear problems
- 10. The Cauchy problem for quasilinear systems
- 11. The mixed problem for quasilinear systems
- 12. Persistence of multidimensional shocks
- Applications to gas dynamics
- 13. The Euler equations for real fluids
- 14. Boundary conditions for Euler equations
- 15. Shock stability in gas dynamics
- Appendix
- A. Basic calculus results
- B. Fourier and Laplace analysis
- C. Pseudo/para-differential calculus
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Oxford University Press |
Auteur(s) | Sylvie Benzoni-Gavage, Denis Serre |
Collection | Oxford Mathematical Monographs |
Parution | 12/12/2006 |
Nb. de pages | 512 |
Format | 16,5 x 24 |
Couverture | Relié |
Poids | 890g |
Intérieur | Noir et Blanc |
EAN13 | 9780199211234 |
ISBN13 | 978-0-19-921123-4 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse