On the tangent space to the space of algebraic cycles on a smooth algebraic variety
Mark C. Green, Phillip Griffiths - Collection Annals of Mathematic Studies
Résumé
In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles.
The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angéniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.
L'auteur - Mark C. Green
Mark Green is Professor of Mathematics and Director of the Institute for Pure and Applied Mathematics at the University of California, Los Angeles.
L'auteur - Phillip Griffiths
Phillip Griffiths is Professor in the School of Mathematics at the Institute of Advanced Study.
Autres livres de Phillip Griffiths
Sommaire
- Introduction
- The classical case when n = 1
- Differential geometry of symmetric products
- Absolute differentials (I)
- Geometric description of T Zn(X)
- Absolute differentials (II)
- The Ext-definition of T Z2 (X) for X an algebraic surface
- Tangents to related spaces
- Applications and examples
- Speculations and questions
- Bibliography
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Princeton University Press |
Auteur(s) | Mark C. Green, Phillip Griffiths |
Collection | Annals of Mathematic Studies |
Parution | 21/02/2005 |
Nb. de pages | 200 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 303g |
Intérieur | Noir et Blanc |
EAN13 | 9780691120447 |
ISBN13 | 978-0-691-12044-7 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie algébrique
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques